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LETTER TO THE EDITOR 

Fluctuation-induced second-order phase transitions 

F Fucito-i. and G Parisif 
+ Istituto di Fisica ‘G Marconi’, Universita di Roma, INFN Roma, Italia 
t Istituto di Fisica della Facolta di Ingegneria dell’Universita di Roma, INFN Frascati, Italia 

Received 10 August 1981 

Abstract. In the framework of the field-theoretical renormalisation group, we study under 
which conditions a second-order transition can be present in systems which should only 
undergo first-order phase transitions, according to the Landau criterion. 

In the framework of the Landau theory (Landau and Lifshitz 1958), phase transitions 
are characterised by the order parameter (pi (i = 1, . . . , N ) ;  one can construct an 
effective free energy F(cp), which is a polynomial in cp, and the value of cp is established 
by minimising F(cp). 

In the high-temperature phase cp = 0 (no linear term in cp is present in F ) ;  for small 
values of cp, F(cp) can be expanded as 

F(cp) - ~ c p ’  + u3q3 + u4cp4+ 0(cp5). (1) 

If u3 = 0 we have a second-order phase transition at T = 0 (6 = 1/~”’--* CO); if u3 # 0 a 
first-order phase transition is present at T > 0. 

It is generally assumed that if there are no symmetries, which impose u3 = 0 (as 
happens in the ferromagnetic case), u3 is different from zero (unless at some special 
points). Therefore by studying the symmetries of the problem and trying to construct a 
cubic invariant, we can distinguish systems having a second-order transition (no cubic 
invariants) from those having a first-order transition (a cubic invariant is allowed). This 
classification is very useful: however there are notable exceptions: some ferromagnets 
undergo a first-order transition, and in the Potts model with q states (q >2)  second- 
order transitions are allowed (Baxter 1973, Nakanishi and Stanley 1981 and reference 
therein). The first phenomenon (fluctuation-induced first-order phase transitions) is 
well understood (Bak et a1 1976, 1977, Mukamel and Krinsky 1976). 

Our aim is to study the second phenomenon (fluctuation-induced second-order 
phase transitions) in the framework of the field-theoretical renormalisation group. In 
the rest of the paper we will mainly study the Potts model, although many arguments 
have a more general basis. 

It is known that the q-state Potts model (q  =2 is the Ising model) has a second-order 
phase transition for q s 4 and a first-order phase transition for q > 4 in two dimensions, 
on a two-dimensional square lattice, with only nearest-neighbour interaction. 

Let us call qc the maximum value of q for which there is a phase transition for a fixed 
lattice (qc = 4 for the square lattice, 2 < qc < 3 for the cubic lattice). Our aim would be to 
compute the value of qc using the field-theoretical version of the renormalisation group 
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(Amit 1976, de Alcantara Bonfim et a1 1980, Priest and Lubensky 1976, Wallace and 
Zia 1975). 

However in this framework it is possible to compute only universal quantities. Some 
reflection will tell us that qc cannot be universal: let us consider a square lattice Potts 
model where the interaction has radius R, i.e. all the spins at distance less than R 
interact pairwise ( R  = 1 : nearest-neighbour interaction; R = CO: infinite-range inter- 
action). 

For q > 2 when R + CO the mean field theory is exact and the transition is first order; 
for finite R there are corrections proportional to inverse powers of R, and these 
corrections remain finite at the first-order transition. The situation for the 1/R 
expansion is qualitatively different from a second-order phase transition where the 
coherence length 5 goes to infinity and the two limits 5 + CO and R + CO do not commute. 

Therefore qc(R) - 2 and qc cannot be universal as long as qc( l )  = 4. However, 
if we change the form of the lattices and of the interactions there will be a maximum 
value of qc ( q M )  for which we have always qc' q M .  Obviously q M  is universal by 
definition and it has the meaning of the maximum value of q for which a second-order 
phase transition is possible. 

Let us present our strategy for computing q M .  The critical behaviour of the Potts 
model can be studied in 6 - E dimensions. In this case for q < one finds a non-trivial 
fixed point of (p3 type. The effective free action F(T,  (p) (where 7 = T = T,) near the 
critical point scales like 

R+W 

with f(0) = 0 and T' = 5-l. 
The function f can be computed in 6 - E dimensions and turns out to behave like 

(3) 2 1/2 3 
f ( ~ ) = t  + E  t + o ( & ~ z ~ ) .  

Stability implies that t = 0 is the absolute minimum of the function f(z); if not, z = 0 is a 
metastable phase and a first-order transition should develop for positive T.  

Our consistency criterion to see if a second-order phase transition is possible is to 
compute the potential f in the scaling region and to look for the absolute minimum (if 

In the Potts model, in the E expansion, the fixed point is of p3 type and one can argue 
that for this kind of fixed point ~ ( - c o )  = -CO in all dimensions. At this stage we should 
conclude that all Potts models (q  > 2) have a first-order transition. However this 
conclusion would be premature. The (p3 fixed point may become unstable (we dis- 
tinguish between an unstable fixed point whose domain of abstraction has zero 
measure, and thermodynamic instability, i.e. existence of lower free energy states), 
decreasing the dimension, and different fixed points may become relevant. If that 
happens we should compute the function f on the new fixed point. 

any). 

There are two possibilities: 
(a) there is a value of z such that f(z) < 0 (f(0) = 0); 
(b) f(z) 3 0 VZ. 

If (a) is valid the new fixed point is thermodynamically unstable and the transition will 
be always first order; if (b) holds a second-order phase transition is possible. As we have 
stressed before, a second-order phase transition will be realised, in an actual system, 
only if the system does not undergo a first-order transition before reaching the fixed 
point. 
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The shape of the function f(z) will tell us the value of qM. In order to implement our 
ideas in the Potts model we have considered a three-coupling-constant theory defined 
by 

where i, j ,  k, 1 = 1 , .  . . , N. The definitions of the tensors are 

Qllk = 1 1:1;1;, Fllki = 1 1P1;1;1?, 
where CY, = 1 , .  . . , N - 1 ,  and the 1: are such that C, 1: = O ;  C a  lplp = ( N +  l)S,,, 
C, 1Pl f  = (N + 1)S"O - 1. Our aim would be to find the corresponding fixed point. 

It is clear that this problem is very difficult to solve in the standard E expansion. To 
study the c p 3  interaction we must stay in 6 - E  dimensions and to study the cp4 interaction 
we must stay in 4 - E dimensions. 

We use therefore the fixed-dimension formalism (Parisi 1980): one defines a 
renormalised field pR proportional to the field cp such that 

1 
Sl1kl = T ( 8 y S k l  +permutations), 

Oi OL 

( 5 )  
4 -1 ((PR(PR)=[:P2+m2+O(p 11 

in momentum space, where m-l = 6; the renormalised dimensionless coupling 
constants are 

gl = ra3'/m6-D, 

gz =rk"k, /m 4 - 0  - r(4) R(F)/m4-Dl A 2 = A 3 = 0  , g3 = r&j/m4-D -rk4,?s)/m4-D1A2=A3=0. 

(6 )  
The subtraction in the definition of the couplings g2, g 3  is such that g2 = g 3  = 0 at 
h2=h3 = O .  

With these preliminaries we can define the function P I  as 

PI = m2 dgJdm2+&ly(gdgl (7) 

where i = 1 , 2 , 3 ;  N, is such that NI = 3, N2 = N3 = 4 and y(g) is the usual renormalised 
function which defines the critical index 77 for the Potts model. When m 2 + 0  the 
renormalised coupling constants tend toward a stable simultaneous zero of the 
functions. The stability condition is that the Hessian matrix for B, = -PI 

H , k  = aB,/agk (8) 

must have all negative eigenvalues at the fixed point. 
Up to this point everything is exact. The main problem consists in computing the 

functions p,. It is known that the P I  functions can be expanded in powers of the 
renormalised coupling constant, with computable coefficients, in terms of Feynman- 
type diagrams (figure 1). For the pure cp4 theory in three dimensions the one- or 
two-loop approximations give results up to the correct order of magnitude for the fixed 
point and the critical exponents (Parisi 1980), while a long six-loops computation gives 
very precise results (Baker et a1 1978). The corresponding two- and three-loop 
computations have already been done for the pure c p 3  theory (Fucito and Marinari 
1981a, b). 
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A 5  

Figure 1. Diagrams involved in our one-loop computation. 

In this note we present the one-loop result: although we cannot hope to be very 
quantitative, in such a crude approximation, we are confident that the qualitative 
picture should be correct. The one-loop Bi functions are: 

In table 1 are specified the multiplicities and the numerical values, in table 2 the 
tensorial couplings, of the diagrams of figure 1 which are involved in this computation. 
In figure 1 the diagrams are labelled with Ai, i = 1, . . . 5 ,  and in table 2 the tensorial 
couplings are defined by ASF, AsS, AFQF etc, to specify that the vertices of A1 can be 
coupled with one tensor F and one tensor S,  with two tensors Fijkl, or with two tensors 
Sijkl and analogously for the other diagrams. 

In table 3 there is a detailed list of some values of gl, gz, g3 for which equations (9) 
have a simultaneous stable zero. The values of q and D for which there is a slash in the 
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Table 1. Multiplicities (in brackets) and values of the diagrams of figure 1 as they enter the 
definitions of formula (7). 

Table 2. Tensorial couplings for the graphs of figure 1. For simplicity we have omitted the 
indices of the tensor. 

Table 3. Values of the coupling constant for various q and D, for which the functions pi 
have a simultaneous stable fixed point. The values of q and D for which there is a slash are 
those for which no stable fixed points are allowed (fixed points are allowed but they are 
unstable). 

D q  4.0 3.0 2.0 1 .o 

4.5 g2= 0.091 0.1742 0 0 
g3 = 0.434 0.0646 0 0 

4.0 g,= 0.1361 0.3197 0.0149 0 

g1= 0.1546 0.3024 0.6001 0.9073 

g1= 0.1742 0.3012 0.7071 1.069 

g3 = 0.0792 0.1285 0.4961 x lo-' 0 

g1= 1.322 0.2877 0.7105 1.171 
3.5 g,= 0.1280 0.4625 0.2385 0 

93 = 0.1217 0.2048 0.0808 0 

3.0 gz= I 0.5428 0.5027 0 
g3 = 0.2778 0.1731 0 

2.5 gz= I 0.5000 0.7065 0 
g3 = 0.3326 0.2469 0 

2.0 g,= I 0.1970 0.7800 0 
g3 = 0.3825 0.2766 0 

g1= 0.2632 0.6849 1.206 

g1= 0.2300 0.63 11 1.171 

g1= 0.1905 0.5523 1.069 

table are those for which no stable fixed point is allowed. In figure 2 we can see the 
region where the Potts model has non-trivial stable fixed points (gl # g2 # g3 # 0) and 
the region where only the pure (p3 interaction points are stable. We now notice that the 
solutions of equations (9) such that g2 and g 3  are the same as those of table 3, but gl has 
opposite sign, also represent an equivalent stable solution. 

Summarising, one finds that there is a region (shown in figure 1) where the (p3-(p4 

fixed point is stable and the pure (p3 point is unstable. 
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Figure 2. We show our results for 2 C D < 4.5. 

What happens to the potentialf(cp) at the fixed point? The precise computation for 
f ( c p )  which incorporates the correct asymptotic behaviours at large cp is quite prob- 
lematic. 

For simplicity we have decided to use a zero-loop approximation, i.e. to writef(cp) as 

(10) f(P) = t m 2 ~ i j ~ i ~ j  +(1/3!)glQijk(Pi(Pi(Pk + (1/4!)(g2FijkI + g3Sijkl)(Pi(pj(Pk(PI 

neglecting the loop corrections. 
As far as we know, the breaking will happen in the direction cpI  = 8; IcpI where E :  is 

the ith vector which points in the direction 1 (arbitrary) of a hypertetrahedron in an 
N-dimensional space and whose normalisation rules have already been explained. We 
can study under which conditions the function f ( c p )  is positive definite as a function of 
Id 

One finally finds (solving (10)) the condition 

(N* - 1)2g: - 3 [ g 3 ~  + g2(iv3 + I)] < 0, (11) 
which turns out to be satisfied in the whole region where the cp4 - c p 3  fixed point exists 
and is stable. 

According to our findings there exists a large area in the D-q plane where the Potts 
model may have a second-order phase transition. 

This area is much larger than the region where the model with nearest-neighbour 
interaction has actually a second-order transition, especially in dimensions 3 and 4. 

These results suggest that different realisations on the lattice (e.g. ferromagnetic 
first-neighbour coupling and small antiferromagnetic second-neighbour coupling) may 
show a rather different pattern of transitions. The approach described in this note 
opens the possibility of computing, using field-theoretical methods, the critical 
exponents of the Potts model when it undergoes a second-order phase transition. 

In order to have semi-quantitative prediction for the exponents we should need a 
two-loop calculation. 
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